통합검색
집짓기 정보 검색결과
-
-
【목조주택 짓기】 ② 우수한 내진성으로 승부수 띄운 중목구조
- 중목구조는 북미식 2″×4″공법에 비해 두께가 두껍고 길이가 긴 구조재, 그리고 구조의 안전성과 목재 강도의 균형성을 위해 집성재集成材를 사용한다. 또한, 접합부의 취약점을 보강하기 위해 전용 철물(TEC-10, TEC-18, TEC-24, TEC-33)과 볼트와 너트, 그리고 드리프트 핀Drift Pin을 사용한다. 각각의 구조재는 정확한 치수의 설계와 가공이 필수적이기 때문에 공장에서 프리 컷Pre-Cut 방식으로 가공하고 있다. 따라서 최소한의 현장 가공으로 자재의 로스율을 줄이고 공기工期도 단축함으로써 공사 원가를 절감할 수 있다. 진도 7의 지진에도 견딜 수 있는 중목구조 내진성을 중심으로 살펴본다.글 블루하우스코리아 정기홍 본부장 031-8017-5002 www.koreabluehouse.com 재래식 공법 & 철물 공법 중목구조는 기둥과 보를 접합하는 방법에 따라 재래식 공법과 철물 공법으로 구분한다. 재래식 공법 재래식 공법주요 구조재들을 ‘이음’과 ‘맞춤’으로 접합하는 방법이다. 이음이란 구조재들을 같은 방향으로 길게 접합하는 것이고, 맞춤이란 구조재들을 직교直交 방향으로 접합하는 것이다. 하지만, 구조재들에 이음 또는 맞춤에 필요한 홈을 가공하면 단면 결손이 생긴다. 따라서 재래식 방법은 수직하중과 횡하중에 안전하다고 할 수 없다. 왜냐하면 일반적으로 두 방향으로 부재를 접합할 때 단면적의 약 13%의 결손율이 발생하며, 네 방향으로 부재를 접합할 때 단면적의 약 51%의 결손율이 생겨서 좌굴挫屈할 수 있기 때문이다. ※ 좌굴[Buckling]: 기둥의 길이가 그 횡단면의 치수에 비해 클 때, 기둥의 양단에 압축하중이 가해졌을 경우 하중이 어느 크기에 이르면 기둥이 갑자기 휘는 현상 철물 공법 철물 공법단면 결손을 줄이기 위해 구조재들을 전용 철물을 사용해 접합하는 공법이다. 구조재들을 전용 철물(TEC-10, TEC-18, TEC-24, TEC-33), 볼트, 너트, 드리프트 핀으로 접합하는 방법으로 단면 결손이 거의 발생하지 않는다. 구조재에 미리 철물을 결속해 현장에 반입하므로 작업 능률이 좋으며, 별도로 보강 철물을 사용하지 않기에 구조재들의 연결 부분이 깔끔하다. 가새/홀다운 귀잡이 보 내진성 높은 안전 주택2016년 경주지진(규모 5.8)과 2017년 포항지진(규모 5.4)으로 ‘우리나라는 더 이상 지진 안전 국가가 아니다’라는 인식이 확산됐다. 많은 사람이 지진 재해에 불안해하면서 풍수해 보험에 가입하고 있다. 또한, 내진 구조설계를 통해 지진에 의한 충격을 순간적으로 분산시켜 진도 7에도 견디는 중목구조가 주목을 받고 있다.어떠한 구조의 건물이라도 강진이 발생하면, 그 구조 내부에 큰 지진 응력應力을 받는다. 이것은 지반의 진동 때문에 건물의 기초에서부터 토대土臺 → 바닥 → 기둥 → 벽 → 보 → 2층 바닥 등의 경로를 거쳐 건물 내부로 전해진다. 이러한 지진 응력을 어떻게 각 구조재에 분담시키는가, 이것이 내진설계의 목표다. 건물 구조의 종류에 따라 내진설계 방법이 다르므로, 구조별 특성을 고려해야 한다. 중목구조의 경우 ▲기둥의 상부와 하부에 대각선으로 지르는 가새[Brace] ▲수직으로 직교하는 토대와 기둥 및 기둥과 보와의 이음 부분이 지진에 의해 어긋나지 않도록 시공하는 홀 다운Hold down 철물 ▲수평으로 직교하는 보와 보 및 토대와 토대의 모서리 가까이 부착하는 귀잡이 토대(또는 보) 등으로 내진성을 높인다. 이처럼 구조재와 부재로 삼각형 구조로 만드는 것이 역학적으로 매우 효과적이다. 사각형 구조는 보통 마름모꼴로 변형되기 쉬운 데 비해 삼각형 구조는 변형시킬 수 없다는 원리에 근거를 둔 것이다.구조재에 가새와 홀 다운 철물, 귀잡이 토대 또는 보 부재를 시공했다고 지진에 안전한 주택이라고 할 수 없다. 튼튼한 구조 덕분에 건물의 완전 붕괴를 방지할 수 있지만, 건물 내부의 설비들까지 보호하기엔 역부족이다. 기술이 발전하면서 건물 내부에 각종 설비가 많아졌기에 문제가 될 수밖에 없다. 건물 내 전기 및 통신설비가 끊기거나, 가스관과 수도관이 파손된다면 지진이 멈춘 후에도 2차적 피해가 발생할 수 있기 때문이다. 또한, 건물 내부에 매우 값어치 있는 물건이나 충격에 불안정한 물질 등이 있는 경우 건물 자체보다 내용물을 더 중요하게 여기기 때문에 ‘무너지지 않는 건물’만으로 지진에 완벽히 대비할 수 없다. 따라서 내진을 기본으로 면진免振과 제진制震 구조도 고려해야 한다.진동 주기를 길게 변화시키는 면진구조내진 이외에도 지진 피해를 더욱 효과적으로 줄일 수 있는 구조들이 있다. 그 가운데 하나가 진동 주기를 길게 변화시켜 건물이 받는 에너지를 줄이는 ‘면진구조’다. 주기가 짧을수록 큰 지진파 에너지를 변화시켜 충격을 완화시키는 것이다. 건물은 구조와 구조재에 따라 지진 발생 시 받는 고유 주기가 있는데, 보통 고층 건물일수록 길어진다. 예상 외로 지진 발생 시 고층 건물이 저층 건물에 비해 피해를 덜 보는 이유이다. 건물과 지반을 격리하면 고유 주기를 변화시킬 수 있다. 즉, 지진 피해를 줄일 수 있는 장치 혹은 구조물 위에 건물을 올리는 것이다. 여기에는 주로 고무와 같은 부드러운 물질이나 구슬 형태의 구조물 등을 사용한다. 지반에 고정된 건물의 경우 지진 발생 시 진동과 함께 흔들릴 수밖에 없지만, 면진구조 건물은 진동이 완화돼 전달되기에 비교적 안전하다. 면진구조 진동을 제어하는 제진구조면진구조를 적용하면 건물 자체는 진동으로부터 비교적 안전할지 몰라도 거대한 건물이 크게 움직인다면 주변 환경에 따라 얼마든지 위험해질 수도 있다. 이를 극복하기 위한 방법이 댐퍼Dampe라는 감쇄減殺 장치를 통해 진동 에너지를 소비함으로써 구조물의 흔들림을 점차적으로 완화시키는 제진구조다. 제진구조 제진구조는 급정차 또는 급출발하는 버스를 생각하면 이해하기 쉽다. 버스가 갑자기 급정거할 때 서 있는 사람은 관성에 의해 몸이 앞쪽으로 기울고, 이때 넘어지지 않으려고 뒤쪽으로 힘을 가하게 된다. 이로써 관성과 자신의 근육에 의한 힘이 균형을 이뤄 넘어지지 않고 서 있게 된다. 제진구조는 이와 같은 원리를 이용한 것이다. 지진으로 인해 전달되는 진동을 감지하고, 그에 따라 대응하는 힘 또는 진동을 발생시켜 구조물로 전달되는 진동을 낮추거나 구조물의 강성, 감쇠減衰 등을 제어해 피해를 줄이는 방법이다. 내력벽 중목구조 중목구조의 내력벽 기능중목구조는 기둥과 보를 접합해 구조체를 만들기에 기둥과 보가 수직하중을 받는다. 대개 기둥과 보를 볼트 및 드리프트 핀으로 고정시키는 핀 접합 방식인데, 이것만으로는 기둥과 보가 일체화되지 않는다. 하지만, 강 접합 방식인 콘크리트조의 경우 기둥과 보가 철근과 콘크리트로 완전히 일체화된다. 핀 접합과 강 접합은 지진 등의 횡력을 받았을 때 견뎌내는 저항력이 다르다. 핀 접합의 경우 횡력을 받으면 접합부가 회전하므로 기둥과 보와 철물만으로 구조를 지탱할 수 없다. 따라서 횡력을 받을 때 견딜 수 있는 별도의 요소가 필요하다. 바로 횡력에 저항하는 내력벽이다. 내력벽은 가새, 석고보드(두께 12.5㎜ 이상), 구조용 합판 등 다양한 종류로 이뤄진다.내력벽의 강도도 각기 다른데, 그 강도를 수치로 나타낸 것이 벽 배율이다. 구조체가 지진에 견디려면 일정 부분 이상의 내력벽이 필요한데, 주로 가새와 판재 내력벽으로 이뤄진다. 가새는 프레임 대각선에 들어가는 부재로 한 개 또는 두 개가 교차해 들어간다. 물론, 한 개보다 두 개가 들어가는 경우 벽 배율이 두 배라고 보면 된다.판재 내력벽은 구조용 합판에 못을 박아 고정한다. 구조용 합판이 횡력을 받으면 못의 힘으로 저항하게 된다. 내력벽의 크기와 양은 중목구조의 경우 구조계산에 따르며, 그렇지 않으면 벽량을 계산한다. 내력벽 일부만 하는 경우, 지진 발생 시 구조물이 뒤틀려 붕괴될 수 있으므로, 반드시 구조 검토 통해 균형 있게 배치해야 한다. 용인 중목구조 주택 구조 계산서 일부 1. 구조 개요- 위치: 경기 용인시 수지구 고기동- 규모: 지상 3층- 건물용도: 단독주택- 구조종별: 목구조2. 구조설계 기준건축구조기준: KBC2009(국토해양부, 2016)3. 재료 강도 및 규격목재: KS F 3020(침엽수 및 육안등급 구조재: 소나무 2등급 이상의 구조용 목재)4. 사용 프로그램- MIDAS/GEN5. 지반 사항- 지반의 허용 지내력: 20KN/㎡ 이상 확보할 것(가정치)6. 확인 사항1) 시공자는 상기 사항을 확인하고, 만약 현장 상황이 상기 사항이나 설계조건과 다를 경우 설계자의 승인을 득한 후 시공하여야 한다. 또한, 이 구조 계산은 최소 규정에 의한 설계이므로 필요에 따라 단면을 증가시켜야 한다.2) 본 구조설계서의 안전 확인에 대한 범위는 지상층의 목구조 부분으로 한정한다.3) 전단벽의 코너 연결 부분은 앵커 접속 철물로 고정하여야 한다. 경사재는 “3.3.5 Shear Wall”도표에서 제시한 목재를 적용한다. 3D 구조 해석 구조해석 보강 전단벽 전원주택라이프 더 보기www.countryhome.co.kr
-
- 집짓기 정보
- 건축정보
-
【목조주택 짓기】 ② 우수한 내진성으로 승부수 띄운 중목구조
-
-
['18년 5월호 특집 2] 우수한 내진성으로 승부수 띄운 중목구조
- 우수한 내진성으로 승부수 띄운 중목구조 중목구조는 북미식 2″×4″공법에 비해 두께가 두껍고 길이가 긴 구조재, 그리고 구조의 안전성과 목재 강도의 균형성을 위해 집성재集成材를 사용한다. 또한, 접합부의 취약점을 보강하기 위해 전용 철물(TEC-10, TEC-18, TEC-24, TEC-33)과 볼트와 너트, 그리고 드리프트 핀Drift Pin을 사용한다. 각각의 구조재는 정확한 치수의 설계와 가공이 필수적이기 때문에 공장에서 프리 컷Pre-Cut 방식으로 가공하고 있다. 따라서 최소한의 현장 가공으로 자재의 로스율을 줄이고 공기工期도 단축함으로써 공사 원가를 절감할 수 있다. 진도 7의 지진에도 견딜 수 있는 중목구조 내진성을 중심으로 살펴본다. 글 블루하우스코리아 정기홍 본부장 31-8017-5002 www.koreabluehouse.com 재래식 공법 & 철물 공법 중목구조는 기둥과 보를 접합하는 방법에 따라 재래식 공법과 철물 공법으로 구분한다. 재래식 공법 주요 구조재들을 ‘이음’과 ‘맞춤’으로 접합하는 방법이다. 이음이란 구조재들을 같은 방향으로 길게 접합하는 것이고, 맞춤이란 구조재들을 직교直交 방향으로 접합하는 것이다. 하지만, 구조재들에 이음 또는 맞춤에 필요한 홈을 가공하면 단면 결손이 생긴다. 따라서 재래식 방법은 수직하중과 횡하중에 안전하다고 할 수 없다. 왜냐하면 일반적으로 두 방향으로 부재를 접합할 때 단면적의 약 13%의 결손율이 발생하며, 네 방향으로 부재를 접합할 때 단면적의 약 51%의 결손율이 생겨서 좌굴挫屈할 수 있기 때문이다. 재래식 공법 ※ 좌굴[Buckling]: 기둥의 길이가 그 횡단면의 치수에 비해 클 때, 기둥의 양단에 압축하중이 가해졌을 경우 하중이 어느 크기에 이르면 기둥이 갑자기 휘는 현상 철물 공법 단면 결손을 줄이기 위해 구조재들을 전용 철물을 사용해 접합하는 공법이다. 구조재들을 전용 철물(TEC-10, TEC-18, TEC-24, TEC-33), 볼트, 너트, 드리프트 핀으로 접합하는 방법으로 단면 결손이 거의 발생하지 않는다. 구조재에 미리 철물을 결속해 현장에 반입하므로 작업 능률이 좋으며, 별도로 보강 철물을 사용하지 않기에 구조재들의 연결 부분이 깔끔하다. 철물 공법 내진성 높은 안전 주택 2016년 경주지진(규모 5.8)과 2017년 포항지진(규모 5.4)으로 ‘우리나라는 더 이상 지진 안전 국가가 아니다’라는 인식이 확산됐다. 많은 사람이 지진 재해에 불안해하면서 풍수해 보험에 가입하고 있다. 또한, 내진 구조설계를 통해 지진에 의한 충격을 순간적으로 분산시켜 진도 7에도 견디는 중목구조가 주목을 받고 있다. 어떠한 구조의 건물이라도 강진이 발생하면, 그 구조 내부에 큰 지진 응력應力을 받는다. 이것은 지반의 진동 때문에 건물의 기초에서부터 토대土臺 → 바닥 → 기둥 → 벽 → 보 → 2층 바닥 등의 경로를 거쳐 건물 내부로 전해진다. 이러한 지진 응력을 어떻게 각 구조재에 분담시키는가, 이것이 내진설계의 목표다. 건물 구조의 종류에 따라 내진설계 방법이 다르므로, 구조별 특성을 고려해야 한다. 중목구조의 경우 ▲기둥의 상부와 하부에 대각선으로 지르는 가새[Brace] ▲수직으로 직교하는 토대와 기둥 및 기둥과 보와의 이음 부분이 지진에 의해 어긋나지 않도록 시공하는 홀 다운Hold down 철물 ▲수평으로 직교하는 보와 보 및 토대와 토대의 모서리 가까이 부착하는 귀잡이 토대(또는 보) 등으로 내진성을 높인다. 이처럼 구조재와 부재로 삼각형 구조로 만드는 것이 역학적으로 매우 효과적이다. 사각형 구조는 보통 마름모꼴로 변형되기 쉬운 데 비해 삼각형 구조는 변형시킬 수 없다는 원리에 근거를 둔 것이다. 구조재에 가새와 홀 다운 철물, 귀잡이 토대 또는 보 부재를 시공했다고 지진에 안전한 주택이라고 할 수 없다. 튼튼한 구조 덕분에 건물의 완전 붕괴를 방지할 수 있지만, 건물 내부의 설비들까지 보호하기엔 역부족이다. 기술이 발전하면서 건물 내부에 각종 설비가 많아졌기에 문제가 될 수밖에 없다. 건물 내 전기 및 통신설비가 끊기거나, 가스관과 수도관이 파손된다면 지진이 멈춘 후에도 2차적 피해가 발생할 수 있기 때문이다. 또한, 건물 내부에 매우 값어치 있는 물건이나 충격에 불안정한 물질 등이 있는 경우 건물 자체보다 내용물을 더 중요하게 여기기 때문에 ‘무너지지 않는 건물’만으로 지진에 완벽히 대비할 수 없다. 따라서 내진을 기본으로 면진免振과 제진制震 구조도 고려해야 한다. 진동 주기를 길게 변화시키는 면진구조 내진 이외에도 지진 피해를 더욱 효과적으로 줄일 수 있는 구조들이 있다. 그 가운데 하나가 진동 주기를 길게 변화시켜 건물이 받는 에너지를 줄이는 ‘면진구조’다. 주기가 짧을수록 큰 지진파 에너지를 변화시켜 충격을 완화시키는 것이다. 건물은 구조와 구조재에 따라 지진 발생 시 받는 고유 주기가 있는데, 보통 고층 건물일수록 길어진다. 예상 외로 지진 발생 시 고층 건물이 저층 건물에 비해 피해를 덜 보는 이유이다. 건물과 지반을 격리하면 고유 주기를 변화시킬 수 있다. 즉, 지진 피해를 줄일 수 있는 장치 혹은 구조물 위에 건물을 올리는 것이다. 여기에는 주로 고무와 같은 부드러운 물질이나 구슬 형태의 구조물 등을 사용한다. 지반에 고정된 건물의 경우 지진 발생 시 진동과 함께 흔들릴 수밖에 없지만, 면진구조 건물은 진동이 완화돼 전달되기에 비교적 안전하다. 면진구조 진동을 제어하는 제진구조 면진구조를 적용하면 건물 자체는 진동으로부터 비교적 안전할지 몰라도 거대한 건물이 크게 움직인다면 주변 환경에 따라 얼마든지 위험해질 수도 있다. 이를 극복하기 위한 방법이 댐퍼Dampe라는 감쇄減殺 장치를 통해 진동 에너지를 소비함으로써 구조물의 흔들림을 점차적으로 완화시키는 제진구조다. 제진구조내력벽 중목구조 제진구조는 급정차 또는 급출발하는 버스를 생각하면 이해하기 쉽다. 버스가 갑자기 급정거할 때 서 있는 사람은 관성에 의해 몸이 앞쪽으로 기울고, 이때 넘어지지 않으려고 뒤쪽으로 힘을 가하게 된다. 이로써 관성과 자신의 근육에 의한 힘이 균형을 이뤄 넘어지지 않고 서 있게 된다. 제진구조는 이와 같은 원리를 이용한 것이다. 지진으로 인해 전달되는 진동을 감지하고, 그에 따라 대응하는 힘 또는 진동을 발생시켜 구조물로 전달되는 진동을 낮추거나 구조물의 강성, 감쇠減衰 등을 제어해 피해를 줄이는 방법이다. 중목구조의 내력벽 기능 중목구조는 기둥과 보를 접합해 구조체를 만들기에 기둥과 보가 수직하중을 받는다. 대개 기둥과 보를 볼트 및 드리프트 핀으로 고정시키는 핀 접합 방식인데, 이것만으로는 기둥과 보가 일체화되지 않는다. 하지만, 강 접합 방식인 콘크리트조의 경우 기둥과 보가 철근과 콘크리트로 완전히 일체화된다. 핀 접합과 강 접합은 지진 등의 횡력을 받았을 때 견뎌내는 저항력이 다르다. 핀 접합의 경우 횡력을 받으면 접합부가 회전하므로 기둥과 보와 철물만으로 구조를 지탱할 수 없다. 따라서 횡력을 받을 때 견딜 수 있는 별도의 요소가 필요하다. 바로 횡력에 저항하는 내력벽이다. 내력벽은 가새, 석고보드(두께 12.5㎜ 이상), 구조용 합판 등 다양한 종류로 이뤄진다. 내력벽의 강도도 각기 다른데, 그 강도를 수치로 나타낸 것이 벽 배율이다. 구조체가 지진에 견디려면 일정 부분 이상의 내력벽이 필요한데, 주로 가새와 판재 내력벽으로 이뤄진다. 가새는 프레임 대각선에 들어가는 부재로 한 개 또는 두 개가 교차해 들어간다. 물론, 한 개보다 두 개가 들어가는 경우 벽 배율이 두 배라고 보면 된다. 판재 내력벽은 구조용 합판에 못을 박아 고정한다. 구조용 합판이 횡력을 받으면 못의 힘으로 저항하게 된다. 내력벽의 크기와 양은 중목구조의 경우 구조계산에 따르며, 그렇지 않으면 벽량을 계산한다. 내력벽 일부만 하는 경우, 지진 발생 시 구조물이 뒤틀려 붕괴될 수 있으므로, 반드시 구조 검토 통해 균형 있게 배치해야 한다. 용인 중목구조 주택 구조 계산서 일부 1. 구조 개요 - 위치: 경기 용인시 수지구 고기동 - 규모: 지상 3층 - 건물용도: 단독주택 - 구조종별: 목구조 2. 구조설계 기준 건축구조기준: KBC2009(국토해양부, 2016) 3. 재료 강도 및 규격 목재: KS F 3020(침엽수 및 육안등급 구조재: 소나무 2등급 이상의 구조용 목재) 4. 사용 프로그램 - MIDAS/GEN 5. 지반 사항 - 지반의 허용 지내력: 20KN/㎡ 이상 확보할 것(가정치) 6. 확인 사항 1) 시공자는 상기 사항을 확인하고, 만약 현장 상황이 상기 사항이나 설계조건과 다를 경우 설계자의 승인을 득한 후 시공하여야 한다. 또한, 이 구조 계산은 최소 규정에 의한 설계이므로 필요에 따라 단면을 증가시켜야 한다. 2) 본 구조설계서의 안전 확인에 대한 범위는 지상층의 목구조 부분으로 한정한다. 3) 전단벽의 코너 연결 부분은 앵커 접속 철물로 고정하여야 한다. 경사재는 “3.3.5 Shear Wall”도표에서 제시한 목재를 적용한다.
-
- 집짓기 정보
- 특집기사
-
['18년 5월호 특집 2] 우수한 내진성으로 승부수 띄운 중목구조
-
-
[11월호 특집] 02.우리집, 지진에 정말 안전할까?
- THEME 02 우리 집, 지진에 정말 안전할까? 울산시 울주군 한 전원주택 단지에 사는 강 모 씨의 요즘 최대 관심사는 바로 지진이다. 수십번의 여진을 체험하고 있기 때문이다. 과연 집은 괜찮을지 불안하다. 인터넷 등을 찾아봐도 불확실한 정보만 눈에 들어온다. 여기에 얼마 전 태풍 ‘차바’까지 울산지역을 휩쓸며 강풍과 집중호우를 발생시키자 주택 안전에 대한 불안은 더욱 커진 상태. 강 씨는 “정부가 2층 이상 주택에 내진설계 강화하는 쪽으로 법을 강화했지만, 1~2층 주택 거주자는 어쩌란 건지 모르겠다”며 ”저층 건축물의 내진설계에 대한 정보와 관련 보강 방법을 정부가 빨리 알려줬으면 좋겠다”고 불만을 토로했다. 지진 이후 인터넷에서의 인기 급상승 검색어는 아마도 ‘지진’과 ‘내진’일 것이다. 그만큼 우리 사회에서 내진은 그동안 관심 없었던 분야 중 하나였다. 고층빌딩이나 아파트에서는 내진설계를 한다고 막연히 알고만 있었지, 내진설계에 대한 개념조차 불확실했던 게 사실. 하지만 경주지진 이후 내진설계에 대한 관심은 가히 폭주 수준이다. 전국 시·군·구청에 ‘우리 집이 내진설계가 돼 있는지 확인해달라’는 문의 전화가 수차례 걸려오는 판국이다. 특히 법령상 내진설계 의무화에서 비껴갔던 1~2층 주택 거주자의 경우, 내진설계와 내진보완에 대한 관심이 뜨겁다. 이에 본지에서는 1~2층 주택의 내진설계와 보완방법 등에 대해 알아봤다. 정부 관계자들이 지난 9월 발생한 지진 피해 지역 현장을 둘러보고 있다.(사진제공: 경상북도청) 01 부산, 진도 6.5 지진 나면 건물 절반 피해 내진설계 관련 법안은 1988년 6층 이상 연면적 10만㎡ 이상 건물에 내진설계 의무화를 한 것이 처음이다. 이후 1995년 5층 이상 1만㎡ 이상으로 강화됐고 2005년 3층 이상 1천㎡ 이상(단, 3~5층 제외)으로, 2009년 3~5층까지 포함하는 것으로 법을 강화했다. 그러다 지난 경주지진 이후 2층 이상 500㎡ 이상의 건축물에는 내진설계를 의무화하도록 법령을 긴급하게 강화하기도 했다. 학계에 따르면, 지진 발생 유형에는 해구海丘형 지진과 직하直下형 지진으로 나눌 수 있다. 해구형 지진은 육지에서 멀리 떨어진 바닷속에 일어나는 지진이며, 직하형 지진은 육지에서 가까운 위치에서 발생해 많은 피해를 입힌다. 대표적인 예로 1995년 1월 일본에서 발생한 고베지진을 들 수 있다. 고베지진 당시 일본의 피해는 엄청났다. 지하 20km 이하에서 발생했다. 지진파 중 속도가 가장 빠른 P파(수직파)가 6km/s 속도로 지표에 도달해 지반이 순간 위로 솟구쳐 바로 낙하했다. 진도 7.2를 기록했다. 지반균열과 함께 고가도로가 붕괴했으며 건물피해만 3천700여 동, 주택피해는 39만 여 동이었으며 사망자 6,432명, 부상자 4만1,531명, 이재민 29만 명이 발생했다. 특히 1~2층 단층 주택의 피해가 커 내진설계 의무화의 불씨를 댕겼다. 전문가들은 이러한 수직형 지진이 우리나라에서 발생할 경우 엄청난 피해를 가져올 것으로 예측한다. 2011년 당시 소방방재청(현 국민안전처)에서 발표한 지진 시나리오에 따르면, 부산 동래구 온천2동 남동쪽 0.59km에 진도 6.5 수직형 지진이 발생할 경우 그 결과는 끔찍하다. 사망만 2,673명, 부상자 3만4,321명에 달할 것이며 건물 붕괴 4,332동, 완파 1만3,374동 등 부산지역 전체 건물의 54%가 피해를 입을 것으로 예상한 것이다. 실제로 경주지진의 피해사례만 봐도 만만치 않다. 알려진 바에 따르면 조적식 구조 건축물의 경우, 수직·경사 균열이 발생했으며 벽체가 탈락하기도 했다. 철근콘크리트 구조 건축물은 구조 형식에 따라 피해는 각각 달랐지만, 주로 벽체와 보, 기둥 균열 등이 파괴됐다. 한옥 등 목구조 건축물은 기와지붕 및 벽체, 마감이 손상됐다. 일각에서는 지난번 경주지진이 조금만 규모가 컸었다면 그 피해는 지금과 비교할 수 없을 만큼 커졌을 것이라는 예측도 조심스레 나오기도 했다. 전문가들은 우리나라도 철저한 내진 설계와 보강, 제도 강화가 필요하다고 입을 모았다. 잠깐! 면진, 제진은 뭔 뜻? 지진을 견디는 방법으로 크게 내진과 면진, 제진이 있다. 내진은 한마디로 지진력을 구조물의 내력으로 버티는 개념이다. 면진은 지진력의 전달을 줄이고 제진은 지진력에 맞대응하는 개념으로 이해하면 쉽다. ● 내진_ 지진에 저항할 수 있도록 건물을 설계해 건물의 붕괴를 막아 인명을 보호하는 것을 의미한다. 보통 면진과 제진을 모두 포함한 용어로 활용한다. ● 면진_ 지진을 면한다는 뜻. 예를 들어 흔들리는 땅이나 건물을 분리해 흔들림의 양을 건물에 덜 전달하는 방법이다. 건물의 바닥에 적층고무나 마찰판 같은 장치를 설치해 구조물의 고유주기를 늘려주는 방법을 취한다. 일반적으로 규모 6 이상의 강진이 많이 발생하는 지역에 적합하다. 우리나라에서는 국가적으로 중요한 시설이나 대형 건물에 적용하고 있는 기술. ● 제진_ 지진 발생 시 그 진동에 맞춰 건물을 적당히 흔들리게 해 에너지를 분산·흡수하는 방법. 지진 강도가 클 경우 건물도 크게 흔들려 또다른 피해가 발생할 수 있다. In Short 지진, 건물에 어떤 피해 줄까 좌우 상하로 흔들릴 수 있는 지진이 건축물에 주는 피해는 엄청나다. 그렇다면 과연 어떠한 피해가 발생할 수 있을까. 1995년 고베지진을 통해 건축 구조별 피해 상황을 구체적으로 확인해봤다. 콘크리트 구조_전문가들에 따르면 고베지진 당시 콘크리트 건물의 경우 필로티 형식 건물 1층 부분의 피해가 컸던 것으로 확인됐다. 기둥의 주근과 콘크리트 구속용 띠철근이 기준보다 가늘고 간격도 넓어 이러한 피해가 있었던 것으로 보인다. 또한, 중간층 붕괴도 있었다. 적지 않은 수가 시공불량이 원인이었다. 목구조_당시 낡은 기와지붕의 피해와 화재로 인한 파손이 많았다. 하지만 프리패브(공업화 주택)한 주택의 경우 내진설계 기준에 맞춰 도면대로 지어진 경우가 많아 그 피해가 월등히 적었다. 스틸하우스 구조_외장재 등 비구조재의 탈락으로 인한 각종 인명 및 재산상의 피해가 있었다. 02 지진에 강한 건물?! 그렇다면 지진에 강한 건물에는 어떤 것이 있을까? 전문가들은 워낙 건축물은 복잡다단한 과정을 통해 만들어지기 때문에 딱 잘라서 어떠한 형태가 지진에 강하다고 단정할 순 없지만, 간략하게 분류할 수 있다고 봤다. 일단, 건물의 평면형이 단순할 것. 내진과 내풍, 내구성 측면에서 바람직한 형태다. 특히 장방형은 정방형보다 내진성이 더 좋다. 지진력이 어느 방향으로 가해져도 균등한 힘을 받기 때문이다. 또한, 건물의 네 코너 부분을 기둥과 벽으로 고정해야 하고, 건물 중량을 가볍게 하는 것도 내진상 유리하다. 하지만 전문가들은 아무리 단순한 형태로 집을 만든다고 해도 제대로 된 설계나 시공을 하지 않는다면 지진에 취약할 수밖에 없다고 지적한다. 반대로 내진에 맞게 설계하고 시공한다면 독특한 디자인 형태의 집이라도 지진에 강할 수 있다는 점을 잊지 말자. 내진에 영향을 미치는 요소 ● 연약층 건물의 어느 층이 바로 위층보다 더 약한 구조를 말한다. 이 경우 지진 시 지진에너지가 연약층에 집중돼 기둥에 손상을 입혀 구조물 전체에 심각한 악영향을 미친다. 얼핏 보기엔 연약층 위 구조물은 상대적으로 손상이 적지만 결국 무너지게 된다. 연약층은 다층 구조물의 붕괴 원인 중 하나다. 연약층은 필로티 구조물의 경우 많이 발견된다. 가늘고 긴 기둥과 깊은 보 모듈에 의한 건물을 강조할 경우 위험하다. ● 단주 건물을 지탱하는 기둥의 길이가 짧아진 상태. 예를 들어 창문이 많은 경우 원 기둥의 길이 중 창문이 난 폭만큼만 실제 기둥으로서 기능을 하게 되는데 이를 떠올리면 이해가 쉽다.단주는 지진이 오면 작아진 기둥이 힘을 받기 때문에 X자 형태로 부서지는 현상이 발생한다. 단주가 많은 집이라면, 단주의 수를 늘리거나 전단벽·가새골조를 평면에 설치하는 등의 방법을 취하면 된다. ● 전단벽 지진 등의 진동이 발생할 때 붕괴하거나 붕괴를 예상하는 벽체를 의미한다. 하지만 요즘 지어진 건물의 목적이 파괴를 방지하는 것인만큼, 주로 횡방향 전단력에 저항하기 위해 설계한 것을 전단벽으로 본다. 전단벽은 건물 내 기둥이나 보처럼 다른 구조 요소가 손상을 입기 전에 먼저 저항해야 하기 때문에, 설계 시 평면 상 충분한 길이를 갖춰야 한다. 건물의 기초부터 지붕층 가장 높은 곳까지 연속적으로 연결돼 있어야 한다. 만약 층에 따라 불연속적으로 이어져 있거나 제외된 부분이 있다면 피해가 발생할 수 있다. 지진에 강한 건축물의 조건 ● 단단한 지반 위에 건축물을 세워야 한다. 매립지나 성토의 약한 지반은 피하는 것이 좋다. 지반에는 적당한 지정地定 작업을 한다. ● 기초공사는 콘크리트조 줄기초로 시공하는 것이 좋다. 보통의 기초 폭보다 저면을 넓히고 내진성이 좋은 매트기초로 시공한다. ● 건물의 형태는 단순하게 한다. 방은 균등하게 공간을 나누며 벽은 밸런스 좋게 배치한다. ● 건물의 4코너 부분을 직각 벽으로 고정하고 큰 창이나 문, 큰 방도 적게 한다. ● 건물의 강도, 안전과 관련한 비용을 절약하지 않고, 시공 불량을 초래하는 일은 방지한다. ● 완공 후에도 정기적 구조진단과 보수유지관리를 최소 5년 간격으로 시행하도록 한다. 내진보강이란? 지진에 저항하기 위한 건축물의 내진성능이 부족하다고 판단되었을 경우 최소한의 비용으로 예상되는 피해를 최소화하기 위한 방법이다. 내진보강을 위해서는 붕괴 방지, 지진 후의 기능유지, 건축물의 자산가치 보전과 같은 조건을 만족하면서 지진 시에 건축물이 어떻게 움직일 것인가를 명확히 예상한 후 이에 따라 구체적인 보강작업이 이루어져야 한다. 내진보강 방법 먼저 건축물의 내진성능 평가를 통해 목표를 설정하고 목적에 맞는 내진보강 공법을 결정한다. 내진보강 기술은 크게 내력향상, 연성개선, 응답제어 및 입력저감 등 3종류로 구분할 수 있다. 이 외에도 제진보강과 면진보강 방법이 있다.
-
- 집짓기 정보
- 특집기사
-
[11월호 특집] 02.우리집, 지진에 정말 안전할까?
-
-
[11월호 특집] 01. 단독주택 내진설계 & 주택구조별 내진성능
- 단독주택 내진설계 & 주택구조별 내진성능 태풍, 장마, 가뭄, 폭설 등 매년 우리의 삶을 위협하는 천재지변이 끊임없이 일어나고 있다. 그런데 지진만큼은 우리나라에서 위협적인 존재가 아니었다. 7월 5일 울산 앞바다에서 발생한 지진은 울산 시내를 흔들어 시민들을 놀라게 했다. 이때만 해도 우려의 소리는 크지 않았다. 두 달 후 9월 12일 경주에서 발생한 지진은 26일 잠정 집계결과 주택 4,994건, 공공시설 182건, 공장 247건, 소상공인 569건 피해당했다고 발표했다. 인명피해는 부상에 그쳤다. 그리고 우리에게 의구심을 남겼다. ‘과연 한반도는 지진에 안전할까?’, ‘우리 집은 지진에 괜찮을까?’ 우리나라 전체 주택 90% 이상이 지진에 취약해 내진 보완 및 내구성 검토가 시급하다는 의견이 다시금 고개를 들었다. 이번엔 정부도 심각성을 받아들여 내년부터 시행할 내진설계를 더욱 강화할 분위기다. 이번 호에는 한반도에 닥친 중규모 지진에 대비해 국내 소규모 건축물의 내진 현황과 내진 보강방법 그리고 주택 구조별 안전성을 검토해보는 시간을 가졌다. 글 백홍기·김수진 참고자료 <소규모 건축물 내진보강 포인트> 국토교통부, 2010 <국내 내진설계기술의 현황 및 시사점> 대한산업공학회, 권지운, 2011 <활성단층의 이해: 최근의 연구에 대한 고찰> 대한지질학회, 김영석 외 3명, 2011 <내진설계와 건축물의 형태> 기문당, 김종성, 2015 <최근 한반도 내륙 지진의 특성> 한국지진공학회, 강태섭 외 3명, 2016 THEME 01 끊임없이 움직이는 지구 액체상태의 지구 핵은 4,000℃가 넘는다. 핵을 둘러싼 맨틀은 그 열기로 뜨겁게 달궈져 꿈틀거린다. 그리고 맨틀은 지구의 껍질인 지각으로 덮여있다. 크고 작은 20개 정도의 판으로 구성된 지각은 일 년에 2~20㎝ 이동한다. 미미한 움직임이지만 거대한 힘으로 산을 만들고 땅을 가르며 바다를 나눠 오늘날 지구의 모습을 만들어냈다. 지진은 지각이 이동하며 서로 상대운동하는 과정에서 일어나는 진동의 물결이고, 지구가 살아있다는 지구 내부의 신호이기도 하다. 그런데 때론 강력한 지구의 신호가 인류에게 재앙을 불러오기도 한다. 이처럼 에너지가 큰 파장은 주로 대륙판 경계에서 나타나며, 일본에서 대규모 지진이 잦은 이유도 유라시아판, 태평양판, 북아메리카판, 필리핀판 경계에 있어서다. 한반도는 유라시아판 위에 있어 대규모 지진이 없었다. 아니, 정확히는 그동안 기록된 역사에 없다는 게 맞다. 한반도를 안전한 지역으로 분류한 것도 몇 만 년 주기로 찾아오는 대규모 지진을 현시대에 적용하는 건 의미 없기 때문이다. 그러나 최근 경주에서 진도 5.8의 중규모 지진이 발생하면서 새로운 국면에 접어들었다. 언제, 어디서, 어느 정도의 규모로 또다시 지진이 일어날지 아무도 예측하지 못하고 있다. 다만, 한반도에도 진도 6.0 이상의 지진이 일어날 수 있다는 가능성만 열어뒀다. 지진을 정확히 예측하는 건 불가능하다. 어느 나라보다 지진 연구에 앞선 일본도 각종 데이터 자료를 통해 앞으로 일어날 지진을 예상할 뿐이다. 그렇다면, 한반도가 안전하다는 주장을 믿어도 될까? 분명한 건 안전을 보장할 만큼 국내 활성단층에 관한 연구와 자료가 부족하다는 것이다. 01 한반도 지진의 특성 9월 21일 예고 없이 찾아온 진도 5.8의 경주 지진은 그동안 겪어보지 못한 진동으로 공포감을 조성하기에 충분했다. 인명피해는 부상 48명에 그쳤지만, 건축물과 기물 파손 4천 건으로 재산 피해가 107억 원에 달했다. 10월 11일 현재 471회를 넘어선 여진은 중규모 지진 진도 4.5를 동반하며, 시민의 불안감을 더욱 키웠다. 지진은 대륙판 이동이나 지각 암석에 쌓인 응력 에너지에 의해 암석이 부서지면서 발생한다. 대규모 지진은 수십에서 수백㎞에 달하는 10여 개의 대륙판이 맨틀 위를 이동하면서 서로 부딪치고 포개지는 과정에서 응력 에너지가 오랜 시간 쌓이면서 발생한다. 주요 7개 대륙판 / 출처: 위키백과 한반도 단층지도 한반도 활성단층 한반도는 대륙판 경계와 떨어져 지진 발생이 적고 규모도 작은 ‘판내부 지진환경’에 있다. 지진의 규모는 지각 운동에 의해 쌓인 응력 에너지와 비례하는데, 유라시아판 위에 있는 한반도는 응력 에너지가 작은 환경에 있어 상대적으로 강한 규모의 지진 발생 가능성을 낮게 봤다. 판내부 지진은 판의 운동으로 일정한 지역에 쌓인 응력 에너지가 지각의 약한 부분을 파괴하면서 발생한다. 이러한 지질층을 활성단층이라 한다. 활성단층은 신생대(제3기) 이후의 현재 지질시대인 제4기에 활동하거나 활동할 수 있는 단층을 말한다. 국내 활성단층은 이기화 교수가 1983년 한반도 남동부에 위치한 양산단층의 활성 가능성을 제기하면서 알려졌다. 당시 학계뿐만 아니라 원전업계에서도 논쟁이 뜨거웠다. 한반도에 지진이 일어날 수 있다는 가능성을 보여줬기 때문이다. 이로 인해 대학과 연구소에서 활성단층에 대한 연구를 활발하게 진행했다. 1990년대 초 한국과 일본 공동연구 POSEIDON(Pacific Orient Seismic Digital Observation Network) 프로젝트에서는 양산단층 남부에 제4기 활성단층을 확인했다. 이후 한반도 남동부에 대한 조사로 양산단층과 울산단층 인근에서 50여 개의 활성단층을 추가로 확인했다. 활성단층은 지진의 90%가 발생하고, 중규모 지진도 발생할 가능성이 높은 지층이다. 향후 발생할 수 있는 지진의 규모를 산정하려면 활성단층의 길이, 이동 거리, 활동 횟수, 응력 에너지와 관련한 보다 정확한 연구가 필요하다. 현재 우리나라 전역에 분포된 단층은 500여 개로 추산하고 있지만, 이 가운데 활성단층의 개수와 활성단층에 응력 에너지가 어느 정도 축적됐는지는 아직 확인되지 않았다. 이번 경주지진이 땅속 12~15㎞ 지점 양산단층에서 발생하면서, 한반도 활성단층 존재여부 논란에 종지부를 찍었다. 02 지진에 의한 2차 및 간접 피해 우려 지난 9월에 울산사회조사연구소에서 울산시민 1만9125명을 대상으로 실시한 조사에 따르면, ‘강진이 발생했을 때 어떤 위험을 가장 두려워하는가’라는 질문에 49.9%가 ‘핵발전소에 의한 2차 피해를 가장 두려워한다’고 답했다. 이어 28.4% 응답자가 지진의 직접적인 피해, 21.7%가 화학공단 파괴로 유해성 화학약품 유출에 의한 2차 피해를 꼽았다. 파도와 같은 파장을 일으키는 지진은 건물뿐만 아니라 기반시설까지 파괴하고, 지진해일은 모든 걸 삼켜버린다. 이처럼 지진은 직접적인 피해와 더불어 간접피해, 기반시설 파괴에 따른 2차 피해가 더욱 큰 참사를 불러오기도 한다. 1906년 4월 샌프란시스코에서 일어난 지진은 가스관을 파괴하면서 도시 곳곳에 화재를 일으켰다. 화재는 나흘간 이어지면서 도시를 마비시키고 전체 건물 90%인 2만5천 채를 불태웠다. 이 사건으로 샌프란시스코는 도시의 80%를 잃어 도시기능을 상실했다. 지진해일은 해저에서 일어난 지진에 의해 발생해 감지하기 어렵고 전파 속도가 빨라 대처하기 어렵다. 2004년 인도네시아 서쪽 수마트라 섬 해저에서 발생한 지진해일이 인도양 연안 국가를 덮쳐 25만 명 이상 사망자가 발생했다. 2011년 동일본대지진에서 발생한 지진해일은 2만여 명을 희생하고, 후쿠시마 원전사고를 일으켜 5년이 지난 현재 원전 반경 40㎞를 죽음의 땅으로 만들었다. 우리나라는 1900년 이후 네 차례 지진해일이 관측됐다. 모두 동해 일본 근해에서 발생한 대규모 지진에 의한 해일이다. 가장 큰 피해는 1983년 5월 일본 아키다현 서쪽 해역에서 발생한 규모 7.7 지진에 의한 해일이다. 진원지에서 가까운 곳은 해수면이 15m 상승했고, 중부 동해안 지역은 2~4m 해수면이 상승했다. 당시 해일이 동해 내륙까지 침범해 사망과 실종 등 5명의 인명피해와 선박과 건물, 시설을 파괴해 3억 7천만 원의 재산피해를 끼쳤다. 지진에 의한 기반시설 파괴는 상황을 더욱 악화시키기도 한다. 도로 파괴는 복구를 위한 현장접근과 피해자 이송을 어렵게 하고 수도 단절은 식수 부족과 화재진압을 어렵게 한다. 이외 댐이 무너져 홍수가 나거나 수도, 전기, 통신이 파괴돼 산업을 마비시켜 사회혼란을 불러오기도 한다. 이처럼 지진은 예상하기 어려운 피해를 보여주므로 신속한 대피요령과 더불어 다양한 체험 등의 교육과 대처 방안을 준비해야 큰 피해를 줄일 수 있다. 03 내진설계 사각지대 ‘소규모 민간건축물’ 「건축법」 제5장 건축물의 구조 및 재료 등 제48조(구조 내력 등)에 따르면, “건축물은 고정하중, 적재하중, 적설하중, 풍압, 지진, 그 밖의 진동 및 충격 등에 대하여 안전한 구조를 가져야 한다”고 명시되어 있다. 이에 따라 2016년 현재 3층 이상, 연면적 500㎡ 이상, 건물 높이 13m 이상, 기둥 간격 10m 이상인 건축물은 내진설계를 의무화하고 있다. 그러나 2층 이하의 건축물은 내진설계 대상에서 제외돼 대다수 서민이 거주하는 소규모 민간건축물은 지진에 취약한 게 현실이다. 소규모 민간건축물은 전국에 약 680만 동이 있고, 이 가운데 45만 동인 6.7%만 내진 성능을 확보한 상태다. 인구밀집도가 가장 높은 서울은 민간건축물 내진 비율이 12.47%, 중진 규모의 지진이 발생한 경남과 울산은 각각 5.16%와 11.81%로, 전국 민간건축물 90% 이상이 내진설계가 되어있지 않다. 특히, 1970대부터 급증한 저층 주택들은 노후화로 지진에 더욱 취약한 상황이다. 전문가들 역시 한반도에 중규모 이상의 지진이 발생하면 대부분 소규모 민간주택이 붕괴할 것을 염려하고 있다. 1995년 고베지진과 1999년 대만지진, 2008년 중국 쓰촨성 지진, 올해 이탈리아에서 일어난 지진에서 대부분 저층 건물이 붕괴하면서 많은 인명피해를 낳았다. 만약, 우리나라에서 중진 규모의 지진이 일어난다면, 어느 정도 피해가 발생할까? 이와 관련해 소방방재청(현 국민안전처) 방재연구소에서 지진 예측 시뮬레이션을 했다. 시뮬레이션 결과에 따르면, ‘서울 중구에서 진도 6.5 지진이 발생했을 때 전국적으로 약 7천 명의 사망자와 10만 명의 부상자가 발생할 것으로 나타났다. 건축물 피해는 서울 전체 건물의 1%가 전파되고 38만 동인 60% 정도가 부분적으로 손실 입을 것으로 예측했다. 현재 정부는 내년부터 2층 이상 주택도 내진설계 의무화하고 기존 주택에 대한 내진보강 방식을 다양화하고 있다. 하지만, 기존주택 내진보강은 신축할 때보다 더 큰 비용이 필요한 점이 지진 방재대책의 걸림돌이 되고 있어 난항을 겪을 것으로 예상한다. 04 내진설계란 내진설계는 지진에 대한 건물의 안전을 확보하는 구조설계다. 건축물의 강도와 연성을 높이고, 지진이 발생했을 때 건축물의 흔들림을 최소화하는 제진, 면진 등의 방법이 있다. 이 가운데 가장 중요한 게 연성을 키우는 것이다. 또한, 내진설계에서 지반의 측방 유동에 따른 구조물 기초 파괴, 구조물 자재 구성 등을 고려해야 한다. 지반 특성을 고려한 지반 분류와 설계스펙트럼도 내진설계에서 중요한 요소로 꼽는다. 그러나 우리나라는 지반 분류가 적절하지 않아 내진설계에 적용하기 어렵다는 게 구조전문가들의 의견이다. 설계스펙트럼은 지진 통계를 기준으로 값을 도출해 내진설계에 반영하지만, 국내 지진 통계자료가 부족해 미국의 통계자료를 사용하고 있다. 이 때문에 우리나라 특성에 맞는 내진설계를 하려면, 먼저 국내 지반 특성에 적합한 지반 분류와 설계스펙트럼을 먼저 갖춰야 한다. 지진이 자주 발생하는 미국 서부와 일본의 내진기술은 앞서있지만, 국내 내진설계의 수준은 미흡한 게 현실이다. 이는 구조설계기술보다는 시스템 문제가 더 크다는 의견도 있다. 현재 우리나라 6층 이상의 건축물 설계에선 구조전문가가 참여해 설계할 것을 의무화하고 있지만, 2~5층 건축물은 구조전문가 협력 없이 건축사가 내진설계 안전성을 확인할 수 있다. 이와 관련해 2011년 1월 감사원 감사결과에 따르면, 표본검사 한 3~5층 건축물 20개 가운데 11개 건축물이 내진성능 미달로 나타났다.
-
- 집짓기 정보
- 특집기사
-
[11월호 특집] 01. 단독주택 내진설계 & 주택구조별 내진성능